https://www.linkedin.com/feed/update/urn:li:activity:6480681711180095488
The two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are defined by
$a_{n}=\sum_{k=1}^{n} \ln \frac{2 k-1}{2 k}$ and $2 b_{n}=\ln (2 n+1)-a_{n}, n \geq 1$.
Prove that the two sequences are strictly monotonic and unbounded.
Solution by Arkady Alt, San Jose,California, USA.
Let $c_{n}:=\sum_{k=1}^{n} \ln \frac{2 k}{2 k-1}$. Then $c_{n+1}-c_{n}=\ln \frac{2 n+1}{2 n}=\ln \left(1+\frac{1}{2 n}\right)>\frac{1}{2 n+1}$ for any $n \in \mathbb{N}$. $\left(\left(1+\frac{1}{m}\right)^{m+1}>e, \forall m \in \mathbb{N}\right.$ implies $\left.\ln \left(1+\frac{1}{m}\right)>\frac{1}{m+1}, \forall m \in \mathbb{N}\right)$.
Hence, $c_{n+1}>c_{n}, \forall n \in \mathbb{N}$ and $c_{n}-c_{1}=\sum_{k=1}^{n} \frac{1}{2 k+1}>\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k+1}=\frac{1}{2}\left(h_{n+1}-1\right)$, where $h_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is n-th harmonic number.
Since $h_{n}>\ln (n+1)$ (because $\left(1+\frac{1}{n}\right)^{n}<e \Leftrightarrow \ln (n+1)-\ln n<\frac{1}{n}, \forall n \in \mathbb{N}$ implies $\left.\sum_{k=1}^{n}(\ln (k+1)-\ln k)<\sum_{k=1}^{n} \frac{1}{k}=h_{n} \Leftrightarrow \ln (n+1)<h_{n}, \forall n \in \mathbb{N}\right)$ then $c_{n}>\ln 2+\frac{1}{2}\left(h_{n+1}-1\right)>\ln 2+\frac{1}{2}(\ln (n+2)-1)$. Thus, $\left(c_{n}\right)$ is strictly increasing and unbounded from above sequence and, therefore, sequence $\left(a_{n}\right)=\left(-c_{n}\right)$ is strictly decreasing and unbounded from below.
Since $b_{n}=\frac{1}{2}\left(\ln (2 n+1)-a_{n}\right)=\frac{1}{2}\left(\ln (2 n+1)+c_{n}\right)$ then $\left(b_{n}\right)$ is strictly increasing and unbounded from above sequence as sum of two strictly increasing and unbounded from above sequences.

